

 Navigation

 	
 next

 	Tarbell 0.9-beta7 documentation

Tarbell

Tarbell makes it simple to put your work on the web, whether you’re a team of one or
a dozen. With Tarbell, you can collaboratively build beautiful websites and publish them with ease.

Tarbell makes use of familiar, flexible tools to take the magic (and frustration) out
of publishing to the web. Google spreadsheets handle content management, so
changes to your stories are easy to make without touching a line of code. Step-by-step
prompts help you set up and configure your project, so that publishing it is a breeze.

New here? Read the Tarbell tutorial or install and configure Tarbell to get started.

Need help? File a ticket tagged “support” in Github [https://github.com/newsapps/flask-tarbell/issues/new].

Tarbell is named after Ida Tarbell, a distinguished muckraking journalist whose
1904 The History of the Standard Oil Company is a masterpiece of investigative
reporting. Read more about her on Wikipedia [http://en.wikipedia.org/wiki/Ida_Tarbell].

Requirements

Tarbell requires Python 2.7 and Git (v1.5.2+). Tarbell does not currently support Python 3.

Tarbell does not work on Windows machines.

Anatomy of a Tarbell project

Tarbell projects are made up of four pieces:

	The core Tarbell library [https://github.com/newsapps/flask-tarbell], installed when you run pip install tarbell

	A Tarbell blueprint directory

	Your project template files

	A Google spreadsheet (optional)

Using Tarbell

	Installation
	Install Tarbell with pip install tarbell

	Configure Tarbell with tarbell configure

	Configure Google spreadsheet access (optional)

	Configure Amazon S3

	Set a default project path

	Using Tarbell with virtualenv

	Tutorial
	Set up a new project

	Structure your project

	Add content

	Displaying data

	Adding CSS

	Using Javascript

	Using {{ super() }}

	Overriding default templates

	Putting it all together: Leaflet maps
	Set up the spreadsheet

	Make a holder for the map

	Give the map a height

	Include map assets on the index page

	Write some Javascript

	Upgrading

	Create and install projects
	Create a new project with tarbell newproject <projectname>

	Install an existing project with tarbell install <repository-url>

	Building projects
	Editing templates

	Understanding Tarbell Blueprints

	Template inheritance: Override files from Tarbell Blueprints by copying to your project directory

	Files prefixed with underscores (_) will not be generated or published

	Configuring projects

	Creating JSON

	Using context variables

	Where can context variables be used?

	Anatomy of a project directory

	Using Google spreadsheets
	The values worksheet

	Named worksheets

	Worksheet, column, and key names are slugified

	Worksheets, columns, and keys names preceded by _ (underscore) are ignored

	Merged cells raise an error

	Publishing
	Generate static sites with tarbell generate

	Publish projects with tarbell publish <target>

	Configuring S3 buckets for a project
	Handling buckets with differing credentials

	Tarbell does not delete files on S3

	Developing Tarbell blueprints
	Basic blueprint ingredients

	Adding filters and functions

	Implementing hooks

	Handling requirements

Reference

	Remote configuration

	Managing projects
	Show all projects with tarbell list

	Switch to a project with tarbell switch <projectname>

	Run preview server with tarbell serve

	Update a project’s blueprint with tarbell update

	Hooks

	Command line reference
	tarbell configure

	tarbell newproject

	tarbell serve

	tarbell publish

	tarbell update

	tarbell generate

	tarbell switch

	tarbell list

	tarbell install

	tarbell install-blueprint

	tarbell credentials

	Configuration reference
	Project settings (tarbell_config.py)

	Tarbell settings (~/.tarbell/settings.yaml)

	Google SDK client secrets (~/.tarbell/client_secrets.json)

	Contributing

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.9-beta7 documentation

Installation

Install Tarbell with pip install tarbell

pip install tarbell

Note

Tarbell requires Python 2.7 and Git (v1.5.2+). Tarbell does not currently support Python 3.

Tarbell does not work on Windows machines.

To install on Ubuntu (tested with Ubuntu 14.04 LTS), install these dependencies first:

apt-get install build-essential git python-pip python-dev libncurses5-dev

To install with Fedora 21, install these dependencies from Edward Borasky’s Tarbell docker image [https://registry.hub.docker.com/u/znmeb/osjourno-tarbell/dockerfile/] (untested).

yum install gcc git libyaml-devel make patch python-devel python-pip readline-devel tar

Configure Tarbell with tarbell configure

The tarbell configure command will set up your Tarbell settings

tarbell configure

Please consider setting up Google spreadsheet access for collaborative data editing and Amazon
S3 settings for easy publishing.

Configure Google spreadsheet access (optional)

In order to allow Tarbell to create new Google Spreadsheets, you’ll need to
download a client_secrets.json file [https://developers.google.com/api-client-library/python/guide/aaa_client_secrets]
to access the Google Drive API. You can share this file with collaborators and
within your organization, but do not share this file anywhere public.

Log in to the Google API Developer Console [https://cloud.google.com/console/project] and create a new project:

[image: _images/create_1_new.png]
[image: _images/create_1-5_new.png]
Now click the “APIs & auth” tab. (Click on the “APIs” tab below that if it
doesn’t open automatically.) Enable Google Drive API.

[image: _images/create_2_new.png]
Click the “Credentials” tab (right below “APIs”) to create a client ID:

[image: _images/create_3_new.png]
Select “installed app”:

[image: _images/create_5_new.png]
Now, go to the “consent screen” settings and give your project a name:

[image: _images/consent-screen.png]
Whew! Now you can download the client_secrets.json file:

[image: _images/create_6_new.png]
The file you download will be called something like
client_secret_longstringofrandomlettersandnumbers.apps.googleusercontent.json.

Rename it to client_secrets.json.

Now, you do one of the following:

	Copy client_secrets.json to ~/.tarbell/client_secrets.json.

	Specify the client_secrets.json download location when running tarbell configure. (By default, Tarbell will attempt to find this file in your Downloads directory.)

The first time a Tarbell command needs access to a Google spreadsheet (say, while you’re running tarbell configure), you’ll be prompted to
authenticate

Go to the following link in your browser:

 https://accounts.google.com/o/oauth2/auth?scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&response_type=code&client_id=705475625983-bdm46bacl3v8hlt4dd9ufvgsmgg3jrug.apps.googleusercontent.com&access_type=offline

Enter verification code:

Follow the link:

[image: _images/create_7_new.png]
You should receive a confirmation code:

[image: _images/create_8.png]
Enter it. If it works, you’ll see:

Authentication successful.

Now you can access and create Google spreadsheets to use with Tarbell projects.

Note

You need to visit the authentication page from the same machine that you are configuring Tarbell
in order to avoid an OAuth Error. If you are using a remote machine, consider using the Lynx terminal
browser. Alternatively, you can pre-authenticate <remote-configuration.rst>.

Configure Amazon S3

Generate keys for your Amazon S3 account. Add them during the Amazon S3 section of installation.

To generate keys, log into your AWS Console [http://aws.amazon.com/], click your name and select
“Security Credentials”.

[image: _images/aws_security_creds.png]
Don’t worry about IAM users right now.

[image: _images/aws_continue.png]
You should see a list of different sections. Click the section that reads,
“Access Keys (Access Key ID and Secret Access Key)” and then the button, “Create New Access Key.”
Note that if you have existing keys, you can currently retrieve its Access Key ID
and Secret Access Key from the legacy Security Credentials page (linked to in this section),
but that Amazon plans to remove the ability to see this information soon.

[image: _images/aws_create_new_key.png]
Woohoo, now you can download your keys! You MUST do this now – Amazon only lets you download
the keys on this screen. If you accidentally close the prompt, you can always delete the
keys you just generated and generate a new pair.

[image: _images/aws_download_keys.png]
Now you need to tell Tarbell what your AWS keys are. Run tarbell configure. After it checks to see if Google is configured, you’ll get this prompt:

Would you like to set up Amazon S3? [Y/n] y

Please enter your default Amazon Access Key ID: (leave blank to skip)

Please enter your default Amazon Secret Access Key: (leave blank to skip)

What is your default staging bucket? (e.g. apps.beta.myorg.com, leave blank to skip)

If you don’t already have a staging or production bucket, you can create one by
going to the S3 management console and clicking “Create bucket.”

[image: _images/aws_create_bukkits.png]
[image: _images/aws_bukkit_settings.png]
Just remember that when you name a bucket, it must be unique to AWS, not just your account.
Like usernames, bucket names are shared across the entire Amazon system. (Which is silly, but
that’s how it is.)

[image: _images/aws_bukkit_settings.png]
Once you’ve added production and staging buckets to your configuration, you will get this message:

Would you like to add bucket credentials? [y/N]

If there are additional buckets in your S3 account that you want to use with Tarbell, enter
their names here. Otherwise, skip this.

Set a default project path

This is where your Tarbell projects will live. This path will be used by tarbell list
and tarbell switch.

[image: _images/project_path.png]

Using Tarbell with virtualenv

Note

If you’ve never heard of virtualenvs or know you’re not using one with
Tarbell, skip this section.

Virtual environments (virtualenv [http://www.virtualenv.org/]) are useful for
developers and advanced users managing many Python packages. Tarbell can be installed
globally or within a virtualenv.

If you’ll be working on Tarbell itself, extending its functionality
or otherwise manipulating the guts of the system, then it might make sense to
install it inside a virtualenv.

Here are some things to keep in mind if you use a virtualenv:

	The Tarbell settings file (~/.tarbell/settings.yaml) is global, meaning all
Tarbell projects - whether inside a virtualenv or not - share the same
settings. This includes the path that Tarbell expects to find all your
projects (i.e., where Tarbell will look when you run tarbell list and
tarbell switch.)

	The client_secrets.json file used to authenticate to Google is also global,
so you may run into problems using multiple Google accounts to access spreadsheets.

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.9-beta7 documentation

Tutorial

Let’s build a website about celebrated Chicago journalist Ethel Payne!

You’ll need to have access to a command prompt (an application on your computer
that allows you to execute text-based commands). Search for the Terminal application.
All of the commands we’ll show you here will need to be typed into the command prompt.

First you need to install and configure
Tarbell. Make sure to set up a Google spreadsheet. Go ahead. We’ll wait.

Set up a new project

Once Tarbell is configured, create a new project by typing this command into your prompt:

tarbell newproject

You’ll need to answer a few questions. What will its name be, where on your computer will it live? And a few others about its data sources and management. Anytme you see something in brackets, you are being prompted with a default answer, and can just hit enter if you wish to accept it. The process will go something like this:

tarbell newproject

What is the project's short directory name? (e.g. my_project) ethelpayne

Where would you like to create this project? [/Users/davideads/tarbell/ethelpayne]

What is the project's full title? (e.g. My awesome project) Ethel Payne: A life in journalism

You will be asked to choose which blueprint you wish to be the foundation of your project. Blueprints can be expanded upon but are very useful for setting the basic configurations necessary for the kinds of projects they have been designed for. See this page [http://flask.pocoo.org/docs/blueprints/] for more about blueprints, and go ahead and pick one:

Pick a Tarbell blueprint:

 [1] Basic Bootstrap 3 template
 https://github.com/newsapps/tarbell-template

[2] Searchable map template
 https://github.com/eads/tarbell-map-template

Which template would you like to use? [1] 1

Cloning into '_blueprint'...

Checking connectivity... done

At this point Tarbell will prompt you to make a Google spreadsheet, and if you didn’t do this during the install and configure part of the tutorial, it’s a good idea to do it now. Tarbell will look for the Google settings you’ll need:

client_secrets found. Would you like to create a Google spreadsheet? [Y/n] y

What Google account should have access to this this spreadsheet? (Use a full email address, such as your.name@gmail.com or the Google account equivalent.)

Success! View the spreadsheet at https://docs.google.com/spreadsheet/your_key_will_go_here

Now Tarbell installs your project’s files and creates a git repo for your code:

Copying configuration file

- Creating tarbell.py project configuration file

- Done copying configuration file

Copying html files...
Copying index.html to /Users/davideads/tarbell/ethelpayne

Initial commit

[master (root-commit) 2bf96fb] Created ethelpayne from https://github.com/newsapps/tarbell-template
5 files changed, 58 insertions(+)
create mode 100644 .gitignore
create mode 100644 .gitmodules
create mode 160000 _blueprint
create mode 100644 index.html
create mode 100644 tarbell_config.py

At this point you might have the option to work with some project management tools, and you will definitely be prompted to use Github for sharing your code:

-- Calling newproject hooks --
--- Calling create_repo
Want to create a Github repo for this project [Y/n]? n
Not creating Github repo...

All done! To preview your new project, type:

tarbell switch ethelpayne

or

cd /Users/davideads/tarbell/ethelpayne
tarbell serve

And if all has gone well? You will see this message:

You got this!

Well, you heard the machine, you got this. Run the switch command to fire up a preview server:

tarbell switch ethelpayne

Switching to ethelpayne
Edit this project's templates at /Users/davideads/tarbell/ethelpayne
Running preview server...

Press ctrl-c to stop the server
 * Running on http://127.0.0.1:5000/
 * Restarting with reloader

Now visit http://127.0.0.1:5000/ in a browser.

You can also run your project by changing to the proejct directory and running the command:

tarbell serve.

You’re ready to start editing your template.

Structure your project

It’s a good idea to organize your project’s files according to convention. That way everyone knows
where to find things. Make directories named css, data, images and js in your project root directory (i.e., not in _blueprint)
to keep your project uncluttered. See the section for creating and installing projects for
more detail about best practices when creating your projects.

Add content

In a browser, open the Google spreadsheet that you created during the project set up.
This is where our website’s content will live. Let’s look at the values worksheet (visible in
the tabs in the bottom left) first.
You should see something like this:

[image: _images/values_worksheet.png]
Keys and values are a common idea in programming: each key is shorthand for a corresponding value.
Each of the values in the values column is available to your site when you use
the matching key in your template.

Note

Header fields that start with underscores, like _notes does here, will not be made
available to your template.

Open your project’s index.html page and, assuming you chose the Basic Boostrap template (option 1),
you should be able to find this line

<h1>{{ headline }}</h1>

Note

To start creating pages, you’ll need a text editor. (TextWrangler [http://www.barebones.com/products/textwrangler/]
is a decent option.)

Look at your page in the browser again and notice the headline matches what’s
in your Google spreadsheet under the value column with the key “headline”.
Try changing that value in the spreadsheet to “Ethel Payne, Chicago journalist”.

Reload the server at http://127.0.0.1:5000 in your web browser to see your changes!

You can add as many keys and values as you like. We’ll add a few.

[image: _images/addtl_values.png]
Now we need to reference these variables in the template. Go back to index.html and add

<blockquote>{{ quote }}</blockquote>
<p>from {{ quote_source }}</p>

Reload your site and look at the results!

Note

Tarbell uses Jinja2 [http://jinja.pocoo.org/] for templating. Read the excellent documentation [http://jinja.pocoo.org/docs/] to learn more about using Jinja.

Displaying data

Sometimes you need to display structured data. Helpfully, the Google spreadsheet you
created has some data like this under the data worksheet. The best way to display
this data in Tarbell is by using a for loop (using Jinja2 [http://jinja.pocoo.org/] syntax)

{% for row in data %}
 <p>
 {{ row.column1 }}:
 {{ row.column2 }}
 </p>
{% endfor %}

You should see the following when you reload your page:

row1, column1: row1, column2
row2, column1: row2, column2

Let’s take a closer look at what’s going on here:

{% for row in data %}

This reads in every row in the data worksheet. If we called our worksheet “birthdates,”
we could access that data by doing:

{% for row in birthdates %}

You’ll notice that we no longer have columns labeled “key” and “value.” Instead, we access
the column we want by name. To understand this better, let’s add some data about some
famous ladies who might have been friends of Ida Tarbell had they known one another:

[image: _images/addtl_columns.png]
Now let’s edit our index.html again to display this information:

{% for row in data %}
 <h2>{{ row.name }}</h2>
 {{ row.born|format_date }} - {{ row.died|format_date }}
 <p>{{ row.name }} was known for her work in {{ row.known_for }}.</p>
{% endfor %}

Your page should now look like this:

[image: _images/tabular_data.png]

Adding CSS

Out of the box, Tarbell gives you Bootstrap 3 CSS. Chances are, you’ll want to extend
this to add your own CSS to your project.

To this point, we’ve ignored the _blueprint directory in your project. Now’s the time to
dive in! You may have noticed this line up at the top of your index.html file:

{% extends "_base.html" %}

The _base.html file is where all of the CSS, JavaScript and other goodies live. By “extending”
_base.html, index.html has access to all of the things that live in the base. You can
read more about how template inheritance works here. [http://jinja.pocoo.org/docs/templates/#template-inheritance]

Note

Filenames prefaced with an underscore will be ignored when you publish your project. Our naming convention
is to use underscores for “partial” templates that represent small pieces of the page, like navigation
and footers.

There are two CSS blocks at the top of the page:

{% block library_css %}
<link rel="stylesheet" type="text/css" href="http://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.1.1/css/bootstrap.min.css" />
<link rel="stylesheet" type="text/css" href="css/base.css" />
{% endblock library_css %}

{% block css %}{% endblock %}

The first block includes Bootstrap 3’s CSS and your project’s default base.css stylesheet. Don’t worry about
it right now. The second block is what you’ll want to extend.

Note

You’ll only need to touch the library_css block if you need to do something like override the version of Bootstrap
included here. Otherwise, for adding project-wide styles, edit the base.css file.

In your project root (i.e., not in _blueprint), create a css folder, if you haven’t done so already. Inside that, create a new style.css file and
add some CSS rules:

h2 { font-family: Georgia, serif; }
strong { color: #c7254e; }

Now switch back over to your index.html and add the css block. Do this on line 2, after the base extension:

{% extends "_base.html" %}

{% block css %}
<link rel="stylesheet" href="css/style.css">
{% endblock %}

{% block content %}

Your text should now be styled!

Using Javascript

You can include JavaScript on your page much the way you would include CSS. By default,
these are the blocks available in _base.html:

{% block library_scripts %}
<script src="http://cdnjs.cloudflare.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script>
<script src="http://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.1.1/js/bootstrap.min.js"></script>
{% endblock library_scripts %}

{% block scripts %}{% endblock %}

The library_scripts block contains the default Bootstrap Javascript and jQuery. You probably
don’t need to mess with this.

The scripts block can be extended in your templates. You’ll want to create a js directory in
your project root to hold all of your Javascript files. Then you can include them in your index.html
(or other templates):

{% block scripts %}
<script src="js/app.js"></script>
{% endblock %}

Using {{ super() }}

Sometimes, you want to extend a CSS or Javascript block without overriding the stuff that’s in the
base. You can do that with the super() template tag. This will look at all of the things in the
base version of the block, and add your new content to it rather than override it. For instance:

{% block library_scripts %}
{{ super() }}
<script src="js/app.js"></script>
{% endblock library_scripts %}

This will yield this on the rendered page:

<script src="http://cdnjs.cloudflare.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script>
<script src="http://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.1.1/js/bootstrap.min.js"></script>
<script src="js/app.js"></script>

Without super(), you would merely end up with:

<script type="text/javascript" src="js/app.js"></script>

Overriding default templates

While the Tarbell base.html template (see more on templates [http://tarbell.readthedocs.org/en/0.9-beta6/build.html])
contains some very handy things, you may find you need to override some of the provided templates. One of
the most common cases in which this occurs is the navigation.

In the _blueprint/base.html template, you can see that the nav is included just before the content starts:

{% block nav %}
 {% include "_nav.html" %}
{% endblock nav %}

{% block content %}{% endblock content %}

To override the default nav, create a new _nav.html file in your project root (at the same
level as index.html, not within the _blueprint directory). Type in a message to yourself:

Ida Tarbell would be proud of this website!

Reload your test page. Bingo!

Now, such a message probably isn’t very helpful to your users, so to create a more functional
nav, copy the code out of _blueprint/nav.html, paste it into _nav.html,
and rejigger the code as desired. It’s all Bootstrap 3, so you might find it helpful to
view the Bootstrap navbar docs [http://getbootstrap.com/components/#navbar].

Putting it all together: Leaflet maps

With Tarbell, you can use a Google spreadsheet to provide any kind of data to your page: text, image URLs, and
even latitude/longitude data that can power a map. We’re going to show you how to use Tarbell to store
geodata for a map.

Set up the spreadsheet

First, we need to create that Google spreadsheet to power the map. Go to the spreadsheet you created when you started
your project, and edit the data tab to contain columns named city, latitude and longitude.
Then, select the visible cells with your mouse, and choose Format -> Number -> Plain text.
(This will prevent Google from automatically converting your lat/longs to dates.)
Enter the following data:

Chicago 41.838299 -87.706953
Detroit 42.3314 -83.0458
Minneapolis 44.9833 -93.2667

It should look like this:

[image: _images/leaflet_data.png]

Make a holder for the map

Now, we’re going to create what’s called a “partial.” This is an HTML file which gets parsed and
added to another HTML file when Tarbell compiles your pages. (_nav.html is a partial,
as is _footer.html.) We’ll call it _map.html. Open it up and add a div that will
contain your map:

<div id="map"></div>

Note

Partials are always prefaced with an underscore _. This tells Tarbell to refrain from
compiling them as independent pages. Otherwise, your project would end up with pages like
yoursite.com/footer.html. Anything you write in a partial could also be written directly on
a page, but using a partial makes it easier to reuse code. For instance, we may want to use our map on
every page on our site, but using a partial means we only store the code in one file, making it
easy to update and maintain.

Give the map a height

We’ll need to set a height and width for this map in the style.css CSS file created earlier with the following rule:

#map { height: 600px; width: 600px; }

Include map assets on the index page

On the index.html page, include the partial like so::

{% include "_map.html" %}

We’ll need to set a height for this map in the CSS file created earlier called style.css with the following rule:

#map { height: 180px; }

Include the Leaflet CSS and your new stylesheet (if you haven’t already) before the content block:

{% block css %}
<link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.css" />
<link rel="stylesheet" href="css/style.css" />
{% endblock %}

Then, after the content block, add the Leaflet Javascript library and a new file you will create:

{% block scripts %}
<script type="text/javascript" src="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.js"></script>
<script type="text/javascript" src="js/map.js"></script>
{% endblock %}

You’ll need to create a js directory in your project root. Within that, create a
file named map.js (note that we included that in the block above). This is where we’ll
write a little bit of Javascript to make the map work.

Write some Javascript

Note

Your Javascript should be enclosed in a $(document).ready(function(){ call,
which ensures that everything enclosed within will be loaded after the page has
loaded. For more information, see this page. [http://learn.jquery.com/using-jquery-core/document-ready/]

Now that everything else is set up, open your map.js file. First, let’s access the data you put in
your spreadsheet and convert it to JSON in one fell swoop with a very handy Jinja filter:

var map_data = {{ data|tojson }}

This will turn the columns from the workbook called data into something that looks like this:

.. image:: img/map_data.png

We can reference our city data in the rest of our Javascript now. So let’s make the map!

When we include leaflet.js on the page, it will create a Javascript object named L that allows us to access
all the Leaflet functionality we need. We need to store that object in a variable that references the div
in _map.html with the ID map, which will contain out map. Note that we refernce the div ID by wrapping the ID
name, map, in quotes. We’ll set the latitude and longitude to that of the first city (from the map_data variable),
and then the zoom level of the tile (the lower the number, the farther out the map will be zoomed to start):

var map = L.map('map').setView([41.838299, -87.706953], 6);

This tells Leaflet to create a map and set the center of it to Chicago, with a default zoom level of 6.

Note

Leaflet map objects give you a great deal of control over your map’s appearance and behavior. The most basic settings
are made via the setView method, which controls latitude, longitude and zoom levels. Leaflet exposes many methods and properties
to manage the state of your map, though, and we definitely encourage you to check out their docs [http://leafletjs.com/reference.html]
and continue experimenting at the end of this tutorial.

Next we’ll give Leaflet the URL of a tileset to addTo the map object we created. We will also set the
max and min zoom levels for the tiles. We’ll use Open Street Map’s tileset:

L.tileLayer(
 'http://{s}.tile.osm.org/{z}/{x}/{y}.png', {
 attribution: 'Map data © OpenStreetMap contributors',
 maxZoom: 16,
 minZoom: 5
}).addTo(map);

Note

For more information about what this code does, see our docs on creating Leaflet maps [http://docs.beta.tribapps.com/maps.html#how-to-use-leaflet-js]

[image: _images/map_tiles.png]
So now we have a map, but it would be really helpful to display some information on it. Let’s add a marker for
Chicago, by adding the lat/lon from the spreadsheet and then attaching it to the map:

var chicagoMarker = L.marker([map_data[0].latitude, map_data[0].longitude]);
chicagoMarker.addTo(map);

[image: _images/chicago_marker.png]
Bingo, there’s Chicago! Now, suppose we want to display a little information when you click on the city:

chicagoMarker.bindPopup('<h3>This is the city of ' + map_data[0].city + '</h3>');

Now, when you click on Chicago, the popup should show the name of the city.

[image: _images/popup.png]
Remember that we assigned the contents of your spreadsheet to the variable map_data. Now we can access the first
element in the JSON data by using the syntax [0]. To grab the second city, we’d use map_data[1], because in this
instance, our counting is zero-indexed. We can tell Javascript which column header we want to reference with the
syntax .columname. So map_data[0].latitude translates to, “Give me the latitude column for the first city
in the data.”

You can see how we could easily create markers for the other two cities:

var detroitMarker = L.marker([map_data[0].latitude, map_data[1].longitude]);
detroitMarker.bindPopup('<h3>This is the city of ' + map_data[1].city + '</h3>');
detroitMarker.addTo(map);

var minneapolisMarker = L.marker([map_data[2].latitude, map_data[2].longitude]);
minneapolisMarker.bindPopup('<h3>This is the city of ' + map_data[2].city + '</h3>');
minneapolisMarker.addTo(map);

[image: _images/final_map.png]
Yay! But wait...what if we have a lot of other cities? This is going to take forever. There is a better way!
Replace all the city marker code with this:

for (i=0; i < map_data.length; i++){
 var marker = L.marker([map_data[i].latitude, map_data[i].longitude]);
 marker.bindPopup('<h3>This is the city of ' + map_data[i].city + '</h3>');
 marker.addTo(map);
}

Now you’re cooking with gas! This is a standard Javascript for loop [http://www.tizag.com/javascriptT/javascriptfor.php]
that creates a counter, i. Note that instead of using numbers with map_data, we’re now using i instead.
Each time the loop runs, as long as i is less than the number of items in the map_data array, i will be incremented.
So on the first pass, i will equal 0, and will pull in the information for Chicago. On the
second pass, it will equal 1 and pull in the information for Detroit. Finally, it will equal 2, and will grab
Minneapolis’ information before it quits. This will work for a spreadsheet of 3 cities or 300.

To delve deeper into what makes a Leaflet map tick, we recommend reading the Tribune Leaflet docs [http://docs.tribapps.com/maps.html].

Happy Tarbelling!

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.9-beta7 documentation

Upgrading

If you’ve already installed Tarbell, you can upgrade with:

pip install -U tarbell

Note

In version 0.9-beta6, some naming conventions changed. The _base folder and base.py file are
now called _blueprint and blueprint.py. Future versions in the 0.9.x and 1.0.x branches will
maintain backwards compatibility with Tarbell projects created using the old naming convention.

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.9-beta7 documentation

Create and install projects

Note

Tarbell requires Git to install project and blueprints. does not support interactive Git sessions. If Git attempts to open an interactive prompt when accessing a private repository via HTTPS, Tarbell will exit with a warning.

Create a new project with tarbell newproject <projectname>

Run

tarbell newproject

You’ll be asked a few questions, such as which path you’d like to create the project on,
whether you want to use Google spreadsheets, and whether you want to instantiate a git repo.
(See the tutorial for more details.)

When you’re done, run a preview server

tarbell switch myprojectname

You can now open up /path/to/myprojectname and start editing the “index.html”
file.

Install an existing project with tarbell install <repository-url>

Note

The project must include a tarbell_config.py file and be able to be cloned with Git.
If the project uses Google spreadsheets, your Google account must be able to access
the spreadsheet in question.

Run

tarbell install https://urltorepository.com/projectname

e.g.

tarbell install https://github.com/sc3/crime-punishment

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.9-beta7 documentation

Building projects

Editing templates

Tarbell projects consist of simple HTML pages that may use Jinja2 [http://jinja.pocoo.org/docs/] templating features.

If you create a file in your project directory called chapter1.html, you’ll be able to preview the file at http://localhost:5000/chapter1.html and publish to the same file. This file can be straight up HTML, or it can inherit from a Tarbell blueprint file.

Files and directories that start with an underscore (_) or a dot (.), like the _blueprint directory containing the Tarbell blueprint files, will not be rendered by the preview server or included in the generated static HTML.

Understanding Tarbell Blueprints

Blueprints are exactly what they sound like –– a basic structure for building projects upon. From the Flask documentation [http://flask.pocoo.org/docs/blueprints/]:

Flask uses a concept of blueprints for making application components and supporting common patterns. Blueprints can greatly simplify how large applications work, but a blueprint is not actually an application. Rather it is a blueprint of how to construct or extend an application.

Tarbell ships with a default blueprint called _blueprint. This folder contains boilerplate code like advertising, analytics, and common page elements. Tarbell projects should inherit from blueprints.

Here’s a simple _blueprint/_blueprint.html example.

<html>
 <head>
 <title>{{ title }}</title>
 {% block css %}
 <link rel="stylesheet" type="text/css" href="css/style.css" />
 {% endblock css %}
 </head>
 <body>
 {% block content %}{% endblock content %}
 </body>
</html>

To inherit from this template, you use the “extend” syntax in index.html or other project files you create. All your index.html needs to contain is:

{% extends '_base.html' %}

{% block content %}
<h1>{{ title }} </h1>
{{ content|markdown }}
{% endblock content %}

You might notice we’re using the |markdown filter. Blueprint templates also define filters, enabled by Jinja2. See building blueprint templates for more, and the Jinja2 [http://jinja.pocoo.org/docs/] docs for more on Jinja2.

If a blueprint defines a static file or template (e.g. _blueprint.css), it will be available relative to the project’s base path (e.g. http://127.0.0.1:5000/style.css). If a project defines a file with the same name, the project’s version will be used instead.

See the basic Tarbell template for a simple implementation of a Blueprint.

Template inheritance: Override files from Tarbell Blueprints by copying to your project directory

Any file in a Tarbell Blueprint can be overridden in your project files.

For example, if your blueprint includes a file _blueprint/_nav.html, you can create a file named _nav.html in your project directory and it will be published instead of the blueprint version.

This works for all files, static or templates.

Files prefixed with underscores (_) will not be generated or published

To suppress a file from publishing, use a filename like _filename.txt.

Configuring projects

Project configuration is kept in the tarbell_config.py file in your project’s blueprint directory.
See Project settings (tarbell_config.py) for configuration documentation.

Creating JSON

You can publish the data coming from your Google spreadsheet as JSON if so desired. To do this, set the CREATE_JSON
flag in tarbell_config.py to True. When you visit yoursite.com/data.json, Tarbell will create some JSON
that will look something like this:

{
 name: "ethelpayne",
 title: "Ethel Payne: A life in journalism",
 headline: "Ethel Payne, Chicago journalist",
 quote: "I stick to my firm, unshakeable belief that the black press is an advocacy press, and that I, as a part of that press, can’t afford the luxury of being unbiased ... when it come to issues that really affect my people, and I plead guilty, because I think that I am an instrument of change.",
 data: [
 {
 name: "Ethel Payne",
 known_for: "civil rights journalism",
 born: "8/14/1911",
 died: 33386
 }
 {
 name: "Grace Hopper",
 known_for: "mathematics and computer programming",
 born: "12/9/1906",
 died: 33604
 },
]
}

The first block of keys and values comes from the values workbook. The data
array represents another workbook. Any other workbooks you create within your spreadsheet will be represented
as separate arrays.

Optionally, you can use the CONTEXT_SOURCE_FILE setting in tarbell_config.py to determine your data source,
which can be a URL, local file, CSV or Excel file.

Note

The data.json file is created on the fly and will not appear in your project root. You can view and access
it locally at 127.0.0.1:5000/data.json. If JSON creation is enabled, it will override any local file named
data.json.

Using context variables

Template data can come from Google spreadsheets, a local or remote CSV or Excel file, or
tarbell_config.py’s DEFAULT_CONTEXT. The context source is configured in tarbell_config.py
(see Project settings (tarbell_config.py) for reference).

This simple DEFAULT_CONTEXT shows many of the key template features:

DEFAULT_CONTEXT = {
 'name': 'nellie-bly',
 'title': 'The Story of Nellie Bly',
 'font_size': '20px',
 # Nested dictionary
 'photos': {
 'intro': {
 'url': 'img/bly01.jpg',
 'caption': 'A caption',
 }
 },
 # Nested list
 'timeline': [
 {'year': '1902', 'description': 'Description...'},
 {'year': '1907', 'description': 'Description...'},
 {'year': '1909', 'description': 'Description...'},
],
 }
}

To print the title in your template, use {{ title }}:

<h1>{{ title }}</h1>

Address a nested dictionary:

<aside>{{ photos.intro.caption }}</aside>

Access a list of data:

 {% for year in timeline %}
 {{ year }}: {{ description }}
 {% endfor %}

Where can context variables be used?

Context variables can be used in HTML, CSS, and Javascript files. If the text file causes a Jinja
template error (which can happen if the file has Jinja-like markers), the file will be served as static
and the preview server will log an error.

This means that CSS and Javascript files may include variables. style.css might include:

#content { font-size: {{ font_size }}; }

Similarly, a Javascript file could include:

var data = {{ photos|tojson }}
console.log(photos.intro.url);

Use this feature with care! Missing variables could easily break your CSS or Javascript.

Anatomy of a project directory

When you run tarbell newproject with the default blueprint, a number of new files and
folders are created, many of them with special significance. Details may vary for other blueprints,
but they’re likely to have many similar files and concepts.

Here’s a rundown of what they all do.

Files in the root directory:

	index.html

	The first page people will see when they visit your project. This is typically where most of
the content lives, and is probably where you want to start editing.

	tarbell_config.py

	The settings and context for this specific project, described in more detail in the
Configuring projects section above.

Files in the _blueprint directory:

Keep in mind that you rarely want to edit the blueprint files in the _blueprint/ directory - if you want
to change something, copy the file to the root directory and make the change there. If a file of the
same name exists in both the root directory and the _blueprint/ directory, Tarbell will rely on the
one in the root directory.

The only time you should edit the files in the _blueprint/ directory is when
you’d like to create or update the blueprint itself.

	_base.html

	The base page template, containing <head> and <body> tags, and pointing to many of the Javascript
and CSS files that will be loaded for each page in the project.

	_footer.html

	The partial template containing anything you’d like to appear consistently in the footer at the
bottom of each page.

	_nav.html

	The partial template containing the nav bar that runs along the top of the page.

	_spreadsheet.xlsx

	This is the template file that Google spreadsheets will be based upon. Unlike most other files in _blueprint, overriding it in your root
directory won’t do anything. However, if you want future projects to be created with a different
spreadsheet template, you can edit this file and commit it to a repository you control; learn more
about this feature in the Developing blueprints section.

	base.css

	The base CSS file imported by the blueprint for this project. Override this file in your root
directory if you’d like to make CSS changes.

	blueprint.py

	A Python file that contains a default set of template filters for use in this project. Override
this file in your root directory if you’d like to alter the behavior of these filters, or add your
own. If you’d like to make your changes available to other projects, check out the Developing
blueprints section.

	favicon.ico

	Favicons are small logos for websites [http://en.wikipedia.org/wiki/Favicon] that typically
appear next to a website’s name in a browser tab. Change this file in order to change the logo
associated with your site in users’ browser tabs, though keep in mind that favicons have
a number of rules [http://www.w3.org/2005/10/howto-favicon] about how they should be
constructed.

	favicon-preview.ico

	This is the icon for the in-development version of a site that appears next to the website’s name
in a browser tab, following the same rules as for favicon.ico above. The key difference is that
this icon is meant to remind developers and testers that they’re not looking at a live site.

	index.html

	This is a fallback version of the project’s front page, in case the index.html file in the root
directory is removed or renamed. It begins life as an exact copy of the root directory’s
index.html.

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.9-beta7 documentation

Using Google spreadsheets

The values worksheet

The values worksheet must have “key” and “value” columns. These key-value pairs will be provided as global variables to templates. So if there’s a row with a key column value of “foo” and a value of “bar”, {{ foo }} in a template will print bar.

Take this sample worksheet:

	key
	value

	title
	Project title

	intro
	Project intro

A values worksheet that contains this data provides the {{ title }} and {{ intro }} variables to the template.

Use them in your templates:

<h2>{{ title }}</h2>
<p class="intro">{{ intro }}</p>

Named worksheets

Other worksheets can hold any kind of data supported by Google spreadsheets. These variables can be accessed by their worksheet name.

If there is no key column in the worksheet, the worksheet can be accessed as a list. Imagine a spreadsheet named cars with these values:

	model
	mpg

	Civic
	25.9

	Accord
	28.1

	Element
	24.6

You can access these variables in your spreadsheet with a loop:

{% for car in cars %}
 <h3>{{ car.model }}</h3>
 <p>MPG: {{ car.mpg }}</p>
{% endfor %}

If a column named key does exist, elements may be accessed by key. Imagine a spreadsheet named companies with these values:

	key
	name
	country

	ford
	Ford
	U.S.A.

	honda
	Honda
	Japan

	volvo
	Volvo
	Sweden

You can access these variables by their key name:

<p>{% manufacturers.ford.name %} is from {% manufacturers.ford.country %}</p>

Worksheet, column, and key names are slugified

Spaces and dashes are replaced with underscores (_). Non alphanumeric characters are removed. Case is preserved.

Examples of names that will be transformed:

	My Worksheet becomes My_Worksheet

	My key\n becomes My_key

	my-Column becomes my_Column

Names that will not be transformed:

	MyColumn remains MyColumn

	mycolumn remains mycolumn

	my_column remains my_column

Worksheets, columns, and keys names preceded by _ (underscore) are ignored

Precede any worksheet name, column name, or key with an underscore to hide it from
your templates and JSON data.

Merged cells raise an error

Because merged cells exhibit unpredictable behavior, if merged cells are encountered
while Tarbell is processing a spreadsheet, an error is raised containing the merged
ranges.

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.9-beta7 documentation

Publishing

Generate static sites with tarbell generate

Generate HTML in a temporary directory:

tarbell generate

Generate HTML in a specific directory:

tarbell generate ~/output/myproject

Note

tarbell generate can be used to manually publish sites to hosts other than Amazon. Write a
simple deployment script or use Fabric to call tarbell generate <mydirectory> and invoke a
command to sync <mydirectory> with your host.

Publish projects with tarbell publish <target>

If Amazon S3 is configured, you can publish with:

tarbell publish <bucketname>

The default bucket is staging.

You can specify a bucket when publishing (defined in tarbell_config.py):

tarbell publish production

Configuring S3 buckets for a project

As touched on in the
Configuring projects section, you can
change the names and locations of your S3 buckets in the tarbell_config.py
file for a given project. Often, projects have a staging version for testing,
and a production version for the final product. However, these names are
entirely arbitrary, so you can pick anything you like.

As an example, let’s say you have 3 versions of your site: one for testing, one
for the live site, and one that you’d like to preserve as an archive. They’re
all kept as subdomains of tribapps.com, and your staging site actually houses
many different sites at various stages of development, so you want to publish
to a specific directory.

This example assumes the same AWS ID and secret access key can be used to authenticate
with each of the targets.

Create or update the S3_BUCKETS variable in tarbell_config.py as follows:

S3_BUCKETS = {
 "staging": "staging.tribapps.com/tarbell-staging",
 "production": "tarbell.tribapps.com",
 "archive": "archive.tribapps.com",
}

To push your site to http://staging.tribapps.com/tarbell-staging, run:

tarbell publish staging

To push your site to http://tarbell.tribapps.com, run:

tarbell publish production

You’ve probably already figured out the pattern, but to push your site to
http://archive.tribapps.com, run:

tarbell publish archive

Note

The preferred format for S3 buckets is demonstrated above, without an s3:// protocol
indicator or trailing slash. However, s3://foo.com/bar/ will work as well.

Handling buckets with differing credentials

What if archive.tribapps.com uses different Amazon S3 credentials?

To handle buckets with non-default credentials, run tarbell configure and configure
a new bucket:

Please specify an additional bucket (e.g. additional.bucket.myorg.com/, leave blank to skip adding bucket) archive.tribapps.com

Please specify an AWS Access Key ID for this bucket: [XXXXXXXXX] XXXXXXXXX

Please specify an AWS Secret Access Key for this bucket: [XXXXXXXXX] XXXXXXXXX

Or add some lines to ~/.tarbell/settings.yaml:

...
s3_credentials:
 foo.bar.com:
 access_key_id: XXXXXXXX
 secret_access_key: XXXXXXXXXXXX

You can now publish to a bucket with non-default access credentials.

Tarbell does not delete files on S3

Because altering Amazon S3 buckets has some inherent dangers, Tarbell 1.0 does not include
a delete feature. You can manually delete files on Amazon through the
web interface [https://console.aws.amazon.com/] or with a client like
Cyberduck [https://cyberduck.io/?l=en].

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.9-beta7 documentation

Developing Tarbell blueprints

Tarbell blueprints are starting points for your projects. They allow you
and your collaborators to take the tedium out of creating similar projects
over and over.

For example, your organization could use a Tarbell blueprint for
all mapping projects that includes all the common libraries, your organization’s
branding, and default data to get started.

Basic blueprint ingredients

All Tarbell blueprints must include a file named blueprint.py. This file may be
empty, but should include a variable called NAME when running tarbell newproject:

NAME = "My Tarbell blueprint"

Most Tarbell blueprints will want to define some standard files:

	_base.html: This can be named whatever you want. It is the Jinja base template
the rest of your templates should extend with {% extends '_base.html' %}.

	index.html: A default page to use as a starting point for project development.

	_spreadsheet.xlsx: This Excel file is used to create the default Google spreadsheet
your project will use.

(Optional) If your blueprint defines a .gitignore file, it will be copied to new projects when
created.

Adding filters and functions

All Tarbell blueprints (and projects) can define
Flask blueprints <http://flask.pocoo.org/docs/0.10/blueprints/>
in order to add filters, context functions, and custom routes.

To enable this functionality, add to blueprint.py:

from flask import Blueprint

NAME = "My Tarbell blueprint"
blueprint = Blueprint("base", __name__)

Note

The "base" argument above is an arbitrary, unique name for the Flask blueprint. It can be
anything, but you should stick with “base” for most blueprints. Same with the blueprint
variable name.

Now you can do anything a Flask blueprint can do, such as define a template filter. Here’s a simple
example:

from flask import Blueprint
from jinja2 import Markup

NAME = "My Tarbell blueprint"
blueprint = Blueprint("base", __name__)

@blueprint.app_template_filter()
def embiggen(text):
 return Markup('<div class="embiggen">{0}</div>'.format(text))

Now you can use the {{ myvariable|embiggen }} in your templates to wrap the output of
myvariable in a special div tag.

Implementing hooks

Tarbell blueprints can also implement Tarbell’s hooks. For example, to print an cheery
message after creating a new project:

from tarbell.hooks import register_hook

NAME = "My Tarbell blueprint"

@register_hook("newproject")
def cheery_message(site, git):
 print("You created a new project! Keep saving journalism and make us proud.")

A common use case for such a hook in the real world is to create a new repository in your
organization’s version control system and set up default tickets.

Handling requirements

Tarbell blueprints can include a requirements.txt file in the same format used by pip.
These requirements will be installed when the Tarbell blueprint or a project that uses it is
installed.

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.9-beta7 documentation

Remote configuration

Note

Improving remote use is significant goal for Tarbell 1.2 [https://github.com/newsapps/flask-tarbell/milestones/1.2].

To use run Tarbell on a remote server, you’ll want to generate a credentials file locally and transfer
your Tarbell configuration directory to the server.

Assuming you have Tarbell properly configured, create a credentials file:

tarbell credentials > ~/.tarbell/credentials.json

Now copy the ~/.tarbell directory to your server. You could use scp, rsync. A preferred
way of doing it is to use a private git repository:

ssh myuser@myserver.tld
git clone git@github.com:myuser/tarbell-secrets.git .tarbell

Once the credentials file is in place on the server, you could create a fabfile.py for deployment
from your server.

from fabric.api import *

env.hosts = ['servername']
env.user = 'myuser'
env.directory = '/home/myuser/virtualenvs/project'

@task
def publish(target='staging'):
 with cd(env.directory):
 with prefix('workon tarbell'):
 run('tarbell publish {0}'.format(target))

Now you can run fab publish:production and deploy from your server.

Or perhaps a simple cron job, with a line like this in the crontab:

*/15 * * * * myuser /home/myuser/projects/myproject/cron.sh

And a little bash script like this.

#!/bin/bash

workon myproject
cd /home/myuser/projects/myproject
tarbell publish production

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.9-beta7 documentation

Managing projects

Show all projects with tarbell list

tarbell list shows all projects in your Tarbell projects directory.

Switch to a project with tarbell switch <projectname>

You can be in any directory, but the project must be in your default Tarbell projects directory.

Run preview server with tarbell serve

You must be in a Tarbell project directory to run Tarbell serve.

Update a project’s blueprint with tarbell update

Run tarbell update to update a project’s blueprint.

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.9-beta7 documentation

Hooks

Tarbell hooks allow project and blueprint developers to take actions during Tarbell project creation, projection installation, generation, and publishing.

To define a hook, edit tarbell_config.py or blueprint.py:

from tarbell.hooks import register_hook

@register_hook("newproject")
def create_tickets(site, git):
 # ... code to create tickets on service of your choice

Here is a more advanced hook from the Bootstrap blueprint that prompts the user to create a new repo
for their project on Github after project creation:

import requests
import getpass

from clint.textui import puts, colored
from tarbell.hooks import register_hook

@register_hook('newproject')
def create_repo(site, git):
 create = raw_input("Want to create a Github repo for this project [Y/n]? ")
 if create and not create.lower() == "y":
 return puts("Not creating Github repo...")

 name = site.project.DEFAULT_CONTEXT.get("name")
 user = raw_input("What is your Github username? ")
 password = getpass.getpass("What is your Github password? ")
 headers = {'Content-type': 'application/json', 'Accept': 'application/json'}
 data = {'name': name, 'has_issues': True, 'has_wiki': True}
 resp = requests.post('https://api.github.com/user/repos', auth=(user, password), headers=headers, data=json.dumps(data))
 puts("Created {0}".format(colored.green("https://github.com/{0}/{1}".format(user, name))))
 clone_url = resp.json().get("clone_url")
 puts(git.remote.add("origin", "git@github.com:{0}/{1}.git".format(user,name)))
 puts(git.push("origin", "master"))

 create = raw_input("Would you like to create some default issues [Y/n]? ")
 if create and not create.lower() == "y":
 return puts("Not creating default issues")

 for title, description in ISSUES:
 puts("Creating {0}".format(colored.yellow(title)))
 data = {'title': title, 'body': description}
 resp = requests.post('https://api.github.com/repos/{0}/{1}/issues'.format(user, name), auth=(user, password), headers=headers, data=json.dumps(data))

Use the publish hook to update the Facebook cache:

import urllib

from clint.textui import colored, puts
from tarbell.hooks import register_hook

def _ping_facebook(url):
 url = "{0}?fbrefresh=CANBEANYTHING".format(url)
 fb_url = "http://developers.facebook.com/tools/debug/og/object?q={0}".format(urllib.quote_plus(url))
 urllib.urlopen(fb_url)
 puts("Pinging {0}".format(colored.yellow(fb_url)))

@register_hook('publish')
def update_facebook(site, s3):
 for name, path in s3.find_file_paths():
 if name.endswith(".html"):
 _ping_facebook("http://{0}/{1}".format(s3.bucket, name))

Finally, here’s a hook from a project’s tarbell_config.py that publishes special social media stub
pages for each row in a worksheet. This allows individual items to be shared from a single-page
listicle app:

import jinja2

from blueprint import _ping_facebook
from boto.s3.key import Key
from clint.textui import puts, colored
from tarbell.hooks import register_hook

@register_hook('publish')
def create_social_stubs(site, s3):
 loader = jinja2.FileSystemLoader('./')
 env = jinja2.Environment(loader=loader)
 template = env.get_template('_fb_template.html')
 data = site.get_context_from_gdoc()

 for row in data.get("list_items", []):
 k = Key(s3.connection)
 k.key = '{0}/rows/{1}.html'.format(s3.bucket.path, row['id'])
 redirect = 'http://{0}/rows/#{1}'.format(s3.bucket, row['id'])
 puts('Redirect {0} to {1}'.format(colored.yellow(k.key), colored.yellow(redirect)))
 output = template.render(bucket=s3.bucket,**row)
 options = {
 'Content-Type': 'text/html',
 }
 k.set_contents_from_string(output, options)
 k.set_acl('public-read')
 url = "http://{0}/{1}".format(s3.bucket.root, k.key)
 _ping_facebook(url)

Here’s the _fb_template referenced above:

<html>

<head>
 <script>
 document.location = "http://{{ bucket }}/#{{ id }}";
 </script>

 <meta property="og:url" content="http://{{ bucket }}/rows/{{ id }}.html" />
 <meta property="og:title" content="Great moments in history: {{ heading }}" />
 <meta property="og:description" content="{{ og }}" />
 <meta property="og:image" content="http://{{ bucket }}/img/{{ img }}" />
</head>

<body></body>

</html>

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.9-beta7 documentation

Command line reference

tarbell configure

Usage: tarbell configure <optional: subcommand>

Subcommands: drive, s3, path, templates

Configures Tarbell. Specifying a subcommand will set up just that section of the configuration.

tarbell newproject

Usage: tarbell newproject <optional: projectname>

Create a new Tarbell project.

tarbell serve

Requires current directory to be a Tarbell project.

Usage: tarbell serve <optional: ip:port>

Run a preview server. Specify an optional listening address, such as “0.0.0.0” or “192.143.23.10:5000”.

tarbell publish

Requires current directory to be a Tarbell project.

Usage: tarbell publish <optional: target, default: staging>

Publish a Tarbell project to Amazon S3 using optional target (configured in tarbell_config.py).

tarbell update

Requires current directory to be a Tarbell project.

Usage: tarbell update

Updates blueprint with git submodule update.

tarbell generate

Requires current directory to be a Tarbell project.

Usage: tarbell generate <optional: output directory>

Make HTML on the file system. If output directory is not specified, a temporary directory will be
used.

tarbell switch

Usage: tarbell switch <project name>

Serve the project specified by project name if it exists in your default Tarbell project directory.

tarbell list

Usage: tarbell list

List projects from your default Tarbell project directory.

tarbell install

Usage: tarbell install <git repository url>

Install a Tarbell project from the Git repository url specified.

tarbell install-blueprint

Usage: tarbell install-blueprint <git repository url>

Install a Tarbell blueprint from the given repository url.

tarbell credentials

Usage: tarbell credentials

Print JSON with the current OAuth credentials.

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.9-beta7 documentation

Configuration reference

Project settings (tarbell_config.py)

Each project has a tarbell_config.py file that controls settings for the project. These are
the possible configuration variables:

	NAME

	Short name of project, such as ‘myproject` (required)

	TITLE

	Descriptive title of project, such as ‘My award winning project` (required)

	EXCLUDES

	A list of files to exclude from publication such as ["*.txt", "img/mockup.psd"] (optional)

	CREATE_JSON

	Boolean. If true, spreadsheet will be previewed and published as data.json (default: False)

	SPREADSHEET_CACHE_TTL

	How long to cache spreadsheet values, in seconds (default: 4)

	SPREADSHEET_KEY

	If provided, Tarbell will use a Google spreadsheet with this key for template context (optional)

	CONTEXT_SOURCE_FILE

	If provided, Tarbell will use this data file for the template context. CSV, XLS, and XSLX files
are supported. The value may use a relative path, an absolute path, or a remote (http) URL. (optional)

	S3_BUCKETS

	A dict of target->url pairs such as { 'production': 'apps.myorg.com' } (required for publishing to S3)

	DEFAULT_CONTEXT

	A dict of fallback values for the project context. Use this if you don’t want or need a Google spreadsheet
or external file.

Tarbell settings (~/.tarbell/settings.yaml)

The settings file uses a simple YAML-based format:

default_s3_access_key_id: <DEFAULT KEY ID>
default_s3_secret_access_key: <DEFAULT SECRET KEY>
default_s3_buckets:
 production: apps.chicagotribune.com
 staging: apps.beta.tribapps.com
google_account: davideads@gmail.com
project_templates:
- name: Basic Bootstrap 3 template
 url: https://github.com/newsapps/tarbell-template
- name: Searchable map template
 url: https://github.com/eads/tarbell-map-template
projects_path: /Users/davideads/tarbell
s3_credentials:
 26thandcalifornia.recoveredfactory.net:
 access_key_id: <KEY ID>
 secret_access_key: <SECRET KEY>

This example shows every possible setting.

	google_account

	Default Google account to use when creating new projects

	project_templates

	A list of {name: ..., url: ...} objects with project templates.

	projects_path

	Path to the user’s Tarbell projects

	default_s3_access_key_id

	Default key ID to use when publishing

	default_s3_secret_access_key

	Default key to use when publishing

	default_s3_buckets

	alias->s3 url pairs to be used during project creation for setting up default bucket aliases. These are only used during project creation and can be overridden on a per-project basis.

	s3_credentials

	Define S3 credentials using a bucket-uri->{ access_key_id: ..., secret_access_key: ...} data strucutre.

Google SDK client secrets (~/.tarbell/client_secrets.json)

Place a client_secrets.json file in ~/.tarbell or use tarbell configure drive.

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 previous

 	Tarbell 0.9-beta7 documentation

Contributing

	Github repository: https://github.com/newsapps/flask-tarbell

 Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

 _static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

_images/create_3_new.png
Google Developers Console

< New Tarbell Project
Overview

APIs & auth
APls

Permissions
Settings
Support

Preview

App Engine

OAuth

OAuth 2.0 allows users to
share specific data with you
(for example, contact lists)
while keeping their
usemames, passwords, and
other information private.
Leam more

CREATE NEW CLIENT D

/

Click here

Compute Engine and App Engine Learn more

Client ID 973310997835 apps . googleuserco
Email address 9733109978356developer . gservic
Download JSON

Client ID for native application
Ciient ID 973310997835~
1bgutc2b7nani79s£r2dc7230152ka
Client secret 52Bx9YFyTyL]_cPsU_TmaMIP

Redirect URls urn:ietfiwg:oauth:2.0:00b
http://localhost

Download JSON Delote

_images/leaflet_data.png
fx

city
Chicago
Detroit
Minneapolis

values

latitude
41838200
423314
44.9833

data

c
longitude
-87.706953
83.0458
93.2667

keyed_data

_images/tabular_data.png
Grace Hopper

Dec. 09, 1906 - Jan. 01, 1992
Grace Hopper was known for her work in mathematics and computer programming.

Ethel Payne

Aug. 14, 1911 - May. 28, 1991
Ethel Payne was known for her work in civil rights journalism.

_images/create_2_new.png
Google Developers Console

< New Tarbell Project

Permissions
Settings
Support

Prevan

App Engine
Compute Engine
Cloud Storage
Cloud Datastore
Cloud SQL
BigQuery @

Cloud Development

Prevan

CalDAV API

Calendar API

Chrome Web Store API

Contacts API

Custom Search API

DFA Reporting API

Directions API

Distance Matrix API

DoubleClick Search API

Drive API

Drive SDK.

Elevation API

Enterprise License Manager API

Enable Drive AP| ===t

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

_images/create_1-5_new.png
New Project

Project name New Tarbell Project

Project ID deductive-water-501 c

'd like to receive email about Google Cloud Platform updates, special offers, and events.
[V 1 have read and agree to all Terms of Service for the Google Cloud Platform products.

...

_images/final_map.png
“llowa | CedarRarids e . <

T S Soth Bend e
Des Moines hBen
—Deshdoines, Daverport et B o
” - Fort Wayne 3
| " i R ~ Peoria__" / : ying
: 2 (el (oo N
2 { (
£ - Indianapolis) Dayton
! — Q ~
Iy
stilodis =
= /| B e
Evansville
Pacucsh i O |

enSireeiMa[.l) contributors

_images/create_7_new.png
Project Default Service Account -

This app would like to:

g View and manage tho fles and documents in ¢y
L= your Google Drive.

Projoct Defaut Service Account and Google wil use this nformaton in
‘accordance wih ther respective terms of service and privacy poicies.

-

_images/create_1_new.png
Google Developers Console

—
Billing
settings PROJECT NAME

API Project

API Project

search.html

 Navigation

 		Tarbell 0.9-beta7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2014, MIT-licensed, created by the Chicago Tribune New Applications Team.
 Created using Sphinx 1.3.1.

_images/project_path.png
what is your Tarbell projects path? [Default: /Users/hbillings/tarbell, 'none' to skip] /Users/hbillings/Projects/tarbell-dev

Directory exists!

Projects path is /Users/hbillings/Projects/tarbell-dev

Done setting up projects path.
Adding Basic Bootstrap 3 template (https://github.com/newsapps/tarbell-template)
Adding Searchable map template (https://github.com/eads/tarbell-map-template)

++

Done configuring project templates.
Writing /Users/hbillings/.tarbell/settings.yaml

- Dof¥® BWfiguring Tarbell. Type ‘tarbell" Tor help.

_images/addtl_values.png
8

10

headline
quote

quote_source

Ethel Payne, Chicago journalist

| stick to my firm, unshakeable belief that
the black press is an advocacy press, and
that I, as a part of that press, can’t afford
the luxury of being unbiased ... when it
come to issues that really affect my people,
and | plead guilty, because | think that | am
an instrument of change.

Ethel Payne: A life in journalism

_images/values_worksheet.png
© ® N o o~ W N =2

ala
3 o

key value

_notes

google_analytics_id
opengraph_image
opengraph_descriptio
twitter_description

headline Test headline

— Optional variables —

Identifier for Google analytics

OpenGraph image (Facebook, Pinterest, Google Plus), use full url
OpenGraph description (Facebook, Pinterest, Google Plus)

Text for twitter

— Example variables —

Show key->value mapping — print in template with {{ headline }}

_images/aws_continue.png
Cancal X/

You are accessing the security credentials page for your AWS account. The account credentials provide
unlimited access to your AWS resources

To help secure your account, follow an AWS best practice by creating and using AWS Identity and Access
Management (IAM) users with limited permissions.

h.. to Security C ‘ | Get Started with IAM Users

) Don’t show me this message again

You want this one

_images/aws_create_new_key.png
Services v

Dashboard

Details
Groups

Users

Roles

Identity Providers

Password Policy

Heather Bilings v Global

Your Security Credentials

Use this page to manage the credentials for your AWS account. To manage credentials for AWS
Identity and Access Mangement (IAM) users, use the 1AM Console..

To learn more about the types of AWS credentials and how they're used, see AWS Security Credentials
in AWS General Reference.

*+ Password

*+ Multi-Factor Authentication (MFA)

/ = Access Keys (Access Key ID and Secret Access Key)

Expand this section

Note: You can have a maximum of two access keys (active or inactive) at a time.

Created Deleted Access Key ID Status. Actions
Feb25th Feb25th
2014 2014 AKIAIRRIAVZHNQEHSXNADeleted
Oct 15th Make Inactive |
2011 AKIAIFIEUVH7OOEMA4FAA Active Delote

Create a new key = | Greate New Access Key

A\ 'fyoumust retrieve existing secret access keys:

Go to the legacy Security Credentials page and then save your keys in|
a secure location. The legacy Security Credentials page will be.
removed in the near future.

*+ CloudFront Key Pairs

+ X.509 Certificates

_images/chicago_marker.png

_images/addtl_columns.png
B N

A
column1
row1, column1
row2, column1

B

column2
row1, column2
row2, column2

name
Grace Hopper
Ethel Payne

born
12/9/1906
8/14/1911

died
1/1/1992
5/28/1991

_images/popup.png
DR |
LN AN S |

_images/create_8.png
Google

Please copy this code, switch to your application and paste it there:
4/rouLaZuRBpIMRRQREZBXO,vauzRw. docATaleFpcemm:

_images/consent-screen.png
Google Devel

< Projects.

Eads' Tarbell
Overview
Permissions

Billng & settings

APIs & auth
APls.
Credentials

Push

Monitoring
Source Code
Compute
Storage

Big Data

Support
Send feedback

Privacy &terms (7

Consent screen

‘The consent screen will be shown to users whenever you request access to their private data using your client ID.

Note: This screen will be shown for all of your applications registered in this project

EMAIL ADDRESS
davideads@gmail com

O -

 Project Name would like to

PRODUCT NAME

Tarbell

@ Koot st s

HOMEPAGE URL (0ptional)
hitps:// or http:// Make your sen, ap and comment aciiy avasase
B v Googe, viie

L0GO (0ptional)

hitps:// or http://

This is how your logo will look to
end users.

Max size: 1204120 px

PRIVACY POLICY URL (0ptional)

hitps:// or http://

_images/create_5_new.png
Create Client ID

APPLICATION TYPE

Web application
‘Accessed by web browsers over a network

Service account

Calls Google APIs on behalf of your application instead of an end-user. Leam
more

@ Installed application

Runs on a desktop computer or handheld device (ke Android or iPhone).
INSTALLED APPLICATION TYPE

Android Learn more

Chrome Application Learn more

108 Leam more
© Other

_images/aws_bukkit_settings.png
Create a Bucket - Select a Bucket Name and Region cancel (X

A bucket is a container for objects stored in Amazon S3. When creating a bucket, you can choose a Region to
‘optimize for latency, minimize costs, or address regulatory requirements. For more information regarding bucket
naming conventions, please visit the Amazon S3 documentation.

Bucket Name: [staging tarbell
Region: [US Standard \
/ Pick a bucket name

Don't worry about this

Make it so!

SetUp Logging >

_images/aws_download_keys.png
Create Access Key

Cancal X/

Your access key (access key ID and secret access key) has been created successfully.

Download your key file now, which contains your new access key ID and secret access key. If you do not
download the key file now, you will not be able to retrieve your secret access key again.

To help protect your security, store your secret access key securely and do not share it.
» Show Access Key

Download Key File| | Close.

_images/create_6_new.png
Google Developers Console

< New Tarbell Project
Overview

APIs & auth
APIs
Credentials
Consent screen
Push

Permissions
Settings
Support

Preview

App Engine
Compute Engine

OAuth

OAuth 2.0 allows users to
share specific data with you
(for example, contact lists)
while keeping their
usemames, passwords, and
other information private.
Leam more

CREATE NEW CLIENT D

Get the JSON

Compute Engine and App Engine Learn more

Client ID 973310997835 apps . googleusercontent .con
Email address 9733109978358developer .gserviceaccount .com
Download JSON

Client ID for native application

Client ID 973310997835-

1bgutc2bTnanj79s£r2dc7230152kace . apps - googleuse:

Client secret 52Bx9YFyTyL]_cPsU_TmaMIP
Redirect URIs urn:ietfiwg:oauth:2.0:00b
http://localhost

\ Download JSON | Dalete

_images/aws_create_bukkits.png
oo -

All Buckets

Name

@ nomz Create staging and production
[treddes buckets for your Tarbell projects

_images/map_tiles.png
b |

Leaflet | Map data © OpenSireeiMa;; contributors

_images/aws_security_creds.png
Services v Global v

Amazon Web Services My Account S
Compute & Networking Database Analytics Billing & Cost Management

Direct Connect DynamoDB & Data Pipeline

Dodeated Network Comecton o @B Prédiiablo and Scalable NoSQL & Orchestraton for Data-

s Daia Sors Workdows

EC2 ElastiCache Elastic MapReduce Sign Out

Virtual Servers in the Cloud In-Memory Cache WP Managed Hadoop Fr

Route 53 RDS Kinesis

‘Scalable Domain Name System ‘Managed Relational Database =z Mmmmm Best practice
s VPC Redshift recommendations to save
" isoited Coud Resources i st Agp Senvces maney, improve faut

. Warehouse Service tolerance, increase

Storage & Content Delivery CloudSearch performance, and close
ot CloudFront -
% GioalConant Doory Nowor DePIOYMent & Management y, g1agiic Transcoder socurly gaps

Glacier CloudFormation ¥ Easy-to-use Scalable Media

Archive Storage i the Cloud Comneten AW Resource Transcodng Service Health

SES

s3 il

‘Scalable Storage i the Cloud SloudTrall s chance Email Sending Sorvico @ Al services operating
(u Storage Sateway Trecking NS tteaton s normally.

Intgrates On-Promisas T CloudWatch

Envronments win CiusSorage b Rocoyeo and spication sas Updato: o 25 2014 112600

_static/comment.png

_static/minus.png

_static/plus.png

_static/comment-close.png

_static/up.png

